A scattering experiment — wave picture

Plane wave approach

(r) e} - dr |2
Fourier Transform (complex) from space r to space Q

We admit that only the time averaged Intensity can be measured and that the point
. L 7\}7 e -
scatterers can be described as p(r) = 2}11 A6 (r5)




Fourier transform: useful relations

Fourier
L . - . Transform of the
— . )-r; jiwt |2 - zr . o )
J =< ;AJG .@ g [P / p(r) e‘ dr)| chiareel
distribution p
1. Linearity: The FT of p(7¥) = f (¥) + ¢ (7) 1s from R space to-
Q space

FT[f(F)+g(P)] =FT[f (7)]+ FT[g(F)]

2. Convolution: p(r) = /f (C; )H (F— & )fff;

FTf(F)xg ()] = FT[f ()] e FT g (7)]

FT “ converts” a convolution in a product and vice versa

T. Schulli, X-rays and reciprocal space




Scattering of x-rays by electrons and crystals

X

A few definitions k=27t/A

f{f Scattering angle 260

I(k) = ([ p(r)eld™# d7)>

Momentum transfer g, unit: 1/m.

Is the best defined measurable quantity
in an experiment.

The scattering angle is useless without
information on the wavelength.

An adapted choice for a reciprocal
orientation space will be very useful to
understand scattering experiments

We measure the Fourier transform of
the distribution of electrons in space r
to space q
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Intermezzo: few practical aspects of momentum space
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Intermezzo: few practical aspects of momentum space
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Concept of reciprocal space and practicality in experiments

- Makes it easy to compare different scattering experiments (this point is essential as Cu
K-alpha wavelength is less and less a “world standard”)

- Quick interpretation possible, peak width of harmonic peaks ( 110 220 330 etc.) can be
extracted and interpreted (angular space is useless for peak width analysis)

- Quantity of Momentum Transfer best suited and most widely used is AL,in diffraction,
the SAXS community tends to use nm. With the convenient definition of the wave-
vector k=2m/A, the momentum transfer Q results in Q=4 t*sin®/ A.

- This leads to the relation Q=2 i/d,,, linking momentum transfer to d-spacing of a
certain reflection.

- When moving beyond structure determination (most cases you may work on), any high
resolution analysis of a Bragg peak makes much more sense in reciprocal space than in
angular space




Size broadening and strain gradient broadening

Strain may lead to lattice parameter gradients within one crystal. The resulting distribution Ad
lattice parameter and its impact on the peak width AQ in reciprocal space Q can be obtained by
looking at the first derivative of Q assuming a d-spacing change Ad:
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Strain broadening is a constantalue (hear%ee for harmonic peaks, as in case of anQotropy this may not be true).
Strain broadening increases in Q




Instrumental influences for peak broadening (examples)

Peak Broadening by spectral bandwidth AA

4TS AQ 4mtsin® 4TS m@

Q=" > =8 5 AQ(AN) =
"equivalent” to strain broadening

M= Q +

AO: convergence angle

Peak Broadening by beam divergence AO:

Q - 41Tsin > AQ i 41cos6 3
A A6 A
(“Peak Broadening”) as a
4mcosO Q - .
AQ(AO)=A6 = AG function of Beam divergence A0
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Peak broadening, how to deal with

-it contains information that should be exploited

-It teaches us to look at integrated intensities (Peak areas), rather than
peak “heights”

, _ - 0
Divergence: AQ(A0) = A9 tan® All these contributions mix... in the form of convolutions

Bandpass: AQ(AA) = Q %
Strain: AQ(Ad) = %d Q
Size D : AQ(D) = %”

FWHM (result)=

FWHM (curvel) + FWHM(curve2)......... \/FWHM(curvel) + FWHM (curve?2)
The truth is in general somewhere in between...... depends on the shape of the peaks




Peak broadening, how to deal with

-it contains information that should be exploited

-It teaches us to look at integrated intensities (Peak areas), rather than
peak “heights”
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A bit more about Crystallite size D

: : ) 27 No Q - If no other broadening effects are
Particle size (D) broadening: AQ(D) = —D e endence involved the size D can be

extracted from any Bragg peak

A similar formula often cited is the Scherrer formula:

Hi... General remark:

) _ , Be careful about what result you expect from particle size
In my today’s tutorial, I will show you how to calculate

crystallites size and average crystallites size from XRD data

using Scherrer equation.

Where,
D = crystallites size (nm) B=FW in rad

K = 0.9 (Scherrer constant)

What ever you extract, call it rather 200 nm instead of 218.67 nm
However, if you stick to one method and compare different
samples, relative differences may well be tracked down to few %

A =0.15406 nm (wavelength of the x-ray sources




A bit more about

Q-conversion

L] L] Frmy
EBookz
Crystallite size 8 :
pposQ(X)" ppos fwq(Y) fw(Y)
Long Name
nit
ents
F(x) bl(ppos)pil1 )"pir180/2)/1
1| 222865 31.7 0.03928  0.2867
2| 241025 34.35  0.03089  0.22556 In Q_space things are
Pesk potition |1 Theta) g R Crystallive Size D [nm) D nm [Average) 3 2.53511 36.2 0.03997 0.29529 . 7
1L Pos6E 0.28673 28 80016077 F7 cﬂszr_-.uu} 4 3.2851 47.48 0.03833 0.294 ||near that weren t
M.36301 0.2255 3.86345631 5| 3.86479 56.54  0.04403 0.351 .
P B S .yun 6| 4.25143 62.8 00434 0357 linear before
=yt = e 7| 456651  67.83 004761 0403
R i i 8| 462362  69.03 0.04506  0.384 ® fwg
57.8564 040304 21, 76128067 9 Linear Fit fwq
9.0324% 38421 P, BT et 1 n0048 _- -
™ 0.046
0.044 ~
< 0.042 1
. e < .
A=0.15406 nn =- ~ 0.040
. = & 0038 .
e & O. -
=FWHM (r: ™ 1200 o il .
F rifs .- G ize dominates all other
. 2 0.034. .
0 = Peak posit: = o o £ influences on peak broadening
. 1 B | T .
First, we need j ol i ] E
XRD data the 2 200+ 111 " ‘\J
| \
. - o] e 9 pmtors kg o b e 2
calculation of ¢ = s 2*3.14159/0.026~250 A
= 20 30 4 S0 e 70 80 :
Lets® start.., =
¥ a A o020 ¢+ —+—797-+r—+—F++r—+—17—r1r—1
3 - - 00 05 10 15 20 25 30 35 40 45 50

)" 23671341

peak position in Q-space (A”)




Examples for typical crystals and limits of these
considerations for peak shapes

As a start, we clearly have to differentiate between

1.)Powders

2.) (perfect) monocrystals
3.) Ideal imperfect crystals (“real” monocrystals) and perfect thin films

2.) Sounds easy but is the worst, so lets start with 3.) and the example
of a thin film: goal: understanding peak Intensities




“Crystallography”= study of periodic objects

But in the end, what we are interested in may well be “the object”

Wect associated with a regular (periodic or non-periodic) grating, defining its repetition
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Scattering f from an Atom

f=f(q, 1)=f(q)

X
12}
10}
Scattered Intensity decays for higher angles due to the
spatial extension of the electron distribution around the
nuclei. This decaying of scattered intensity with angle
describes the Fourier Transform of the electron cloud:
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Atomic scattering factor of Silicon
Atomic scattering factor of Oxygen




Scattering from an Crystalline thin block

Being a periodic arrangement of atoms a crystal can be “built” using a periodic arrangement of delta-functions
convoluted with one atom (or a unit cell). A convolution in real space becomes a product in reciprocal space

Infinite crystal Truncation in 2D crystal -
Infinite periodic = thin film
Lattice dimension
Real - o)
space =
A
I
Reciprocal *
space

)
o
)
o
O

Big crystals: sharp peaks, small crystals: narrow peaks. Peak intensities depend on the structure factor.




Diffraction from a thin film, simplified approach

We recall: The function describing intensity distribution in reciprocal space is related to the Fourier
Transform of the distribution of scatterers in real space.

If we try to understand the building blocks of materials we can eventually treat their Fourier
Transforms separately and use then these building blocks to built up reciprocal space.

What we are looking for is a set of lego pieces that we can decompose and recompose freely when
moving from reciprocal space to real space




Diffraction from a thin film

k, _
. . : : k
Reuprocal Space consideration in a d
i i ¥ keinOy. 1%
wider sense.... Phase difference 2*a;*sin©:= 1*A
z

With reflection of X-ray light from the top and the bottom of a thin film there Must also be a “Bragg-condition”,
but at very low angles of incidence, as the film thickness is “much thicker” than the spacing between atoms. Of
course the path difference here as well can be 1,2, 3, ...,n, times A. Leading to a series of tightly spaced peaks

At much lower angles than Bragg
diffraction, there must be a “Bragg’s law”
for constructive interference from the top
and the bottom of the thin film

[1] H. Kiessig (1931)
yInterferenz von Rontgenstrahlen an diinnen Schichten®. Annalen der Physik 10, 769-87.




log(Normalized Intensity)

X-ray reflectivity from a thin film
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