
A scattering experiment – wave picture
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Plane wave approach

At the observation point we record 

We admit that only the time averaged Intensity can be measured and that the point 
scatterers can be described as 

Fourier Transform (complex) from space r to space Q
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Fourier transform: useful relations
Fourier 
Transform of the 
charge density 
distribution ρ
from R space to-
Q space

FT “ converts” a convolution in a product and vice versa 

2. Convolution: 

T. Schulli, X-rays and reciprocal space



Scattering of x-rays by electrons and crystals
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A few definitions
l

k0,i,p....

k=2p/l

kf

l
p sin4

);(  qqkkQorq if



q


Scattering angle 2

Momentum transfer q, unit: 1/m. 
Is the best defined measurable quantity 
in an experiment. 
The scattering angle is useless without 
information on the wavelength.
An adapted choice for a reciprocal 
orientation space will be very useful to 
understand scattering experiments 
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2

We measure the Fourier transform of 
the distribution of electrons in space r
to space q



Intermezzo: few practical aspects of momentum space
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Bragg:  sin (𝜃) =
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Intermezzo: few practical aspects of momentum space

Plotted over  ( )B
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Plotting over d-spacing is not practical !
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Harmonic series easy to detect

Tobias Schulli AIBN Lecture Series

-> d100=2π/Q100=4.72Å

ΔQ100=0.01 Å-1

Crystal size (along (100) !!)
=2π/0.01=630 Å

ΔQ220=0.03 Å-1

Crystal size (along 
(110) !!)
=2π/0.01=210 Å

Any further observations ?



Concept of reciprocal space and practicality in experiments

- Makes it easy to compare different scattering experiments (this point is essential as Cu 
K-alpha wavelength is less and less a “world standard”)

- Quick interpretation possible, peak width of harmonic peaks ( 110 220 330 etc.) can be 
extracted and interpreted (angular space is useless for peak width analysis)

- Quantity of Momentum Transfer best suited and most widely used is Å-1,in diffraction, 
the SAXS community tends to use nm-1. With the convenient definition of the wave-
vector k=2π/λ, the momentum transfer Q results in Q=4 π*sinϴ/ λ. 

- This leads to the relation Qhkl=2 π/dhkl linking momentum transfer to d-spacing of a 
certain reflection.

- When moving beyond structure determination (most cases you may work on), any high 
resolution analysis of a Bragg peak makes much more sense in reciprocal space than in 
angular space
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Size broadening and strain gradient broadening
Strain may lead to lattice parameter gradients within one crystal. The resulting distribution Dd
lattice parameter and its impact on the peak width ΔQ in reciprocal space Q can be obtained by 
looking at the first derivative of Q assuming a d-spacing change Dd: 

d
Q

p
l

p 2sin4
 2

2

dd

Q p


D
D

D
DQ

p2
)( DParticle size (D) broadening:

No Q -
dependence

(100) (200) (300)

Size broadening

Q Page 65

(100) (200) (300)

Strain broadening

Q

Depends on Q
itselfQ

d

d

dd

d
dQ

D


D
DD

p2
)(Strain broadening

Strain broadening is a constant value (here for harmonic peaks, as in case of anisotropy this may not be true). 
Strain broadening increases in Q 



Instrumental influences for peak broadening (examples)

,  ->∆

∆

∆

to strain broadening 

Peak Broadening by spectral bandwidth Δλ

Peak Broadening by beam divergence ΔΘ:

, -> ∆
∆

->

=
(“Peak Broadening”) as a 
function of Beam divergence D

D
2

D: convergence angle
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Peak broadening, how to deal with
-it contains information that should be exploited
-It teaches us to look at integrated intensities (Peak areas), rather than 
peak “heights” 

Divergence: ∆𝑄(∆𝜃) = ∆𝜃

Bandpass: ∆𝑄 ∆λ = 𝑄 ∗
∆

Strain: ∆𝑄 ∆𝑑 =
∆ Q 

Size D : ∆𝑄 𝐷 =

All these contributions mix… in the form of convolutions
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FWHM (result)=
FWHM (curve1) + FWHM(curve2)………  

The truth is in general somewhere in between…… depends on the shape of the peaks



Peak broadening, how to deal with
-it contains information that should be exploited
-It teaches us to look at integrated intensities (Peak areas), rather than 
peak “heights” 
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 width
 Linear fit

Equation y = a + b*x

Weight No Weighting

Residual Sum of 
Squares

6.25939E-6

Pearson's r 0.96191

Adj. R-Square 0.91282

Value Standard Error

width
Intercept 0.0022 0.00123

Slope 0.00484 5.61753E-4

Divergence: ∆𝑄(∆𝜃) = ∆𝜃

Bandpass: ∆𝑄 ∆λ = 𝑄 ∗
∆

Strain: ∆𝑄 ∆𝑑 =
∆ Q 

Size D : ∆𝑄 𝐷 =

For Q=0 only divergence and size contributions -> the 
minimum crystallite size can be estimated to be 𝐷 >

.
~3000 Å (300 𝑛𝑚)
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A bit more about Crystallite size D

D
DQ

p2
)( DParticle size (D) broadening: No Q -

dependence
If no other broadening effects are 
involved the size D can be 
extracted from any Bragg peak

A similar formula often cited is the Scherrer formula: 

β=FW in rad

General remark:
Be careful about what result you expect from particle size

??

What ever you extract, call it rather 200 nm instead of 218.67 nm
However, if you stick to one method and compare different 
samples, relative differences may well be tracked down to few %
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A bit more about 
Crystallite size D

Q-conversion
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In Q-space things are 
linear that weren’t 
linear before

At Q=0, particle size dominates all other 
influences on peak broadening

2*3.14159/0.026~250 Å 



Examples for typical crystals and limits of these 
considerations for peak shapes
As a start, we clearly have to differentiate between
1.)Powders
2.) (perfect) monocrystals
3.) Ideal imperfect crystals (“real” monocrystals) and perfect thin films

2.) Sounds easy but is the worst, so lets start with 3.) and the example 
of a thin film: goal: understanding peak Intensities



“Crystallography”= study of periodic objects

*=

But in the end, what we are interested in may well be “the object”

A Crystal is an object associated with a regular (periodic or non-periodic) grating, defining its repetition

Grating Leads to regular “Bragg” 
peaks

1 2 3 4 5 6 7 8 9
1E-3

0.01

0.1

1

Momentum transfer Q (Å-1)

lo
g

(N
o

rm
al

iz
e

d
 I

nt
en

si
ty

)

0 2 4 6 8 10
0.01

0.1

1

N
or

m
al

iz
e

d 
In

te
n

si
ty

Momentum transfer Q (Å-1)

“Object” leads to a structure that 
determines the height of the peaks

Crystallography: We can only sample the read 
curve in distinct points, but a precise knowledge of 
the red curve is required to resolve an image of the 
“object”
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Scattered Intensity decays for higher angles due to the 
spatial extension of the electron distribution around the 
nuclei. This decaying of scattered intensity with angle 
describes the Fourier Transform of the electron cloud: 

f~Z

f=f(q, l)=f(q)



Scattering f from an Atom
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Scattering from an Crystalline thin block
Being a periodic arrangement of atoms a crystal can be “built” using a periodic arrangement of delta-functions 
convoluted with one atom (or a unit cell). A convolution in real space becomes a product in reciprocal space 

74

Big crystals: sharp peaks, small crystals: narrow peaks. Peak intensities depend on the structure factor.



Diffraction from a thin film, simplified approach

We recall: The  function describing intensity distribution in reciprocal space is related to the Fourier 
Transform of the distribution of scatterers in real space. 

If we try to understand the building blocks of materials we can eventually treat their Fourier 
Transforms separately and use then these building blocks to built up reciprocal space.

What we are looking for is a set of lego pieces that we can decompose and recompose freely when 
moving from reciprocal space to real space



Diffraction from a thin film
Reciprocal space consideration in a 
wider sense….

x

y

z a3

0k


fk


Phase difference 2*a3*sinϴ:= 1*λϴ ϴ

[1] H. Kiessig (1931) 
„Interferenz von Röntgenstrahlen an dünnen Schichten“. Annalen der Physik 10, 769-87.

With reflection of X-ray light from the top and the bottom of a thin film there must also be a “Bragg-condition”, 
but at very low angles of incidence, as the film thickness is “much thicker”  than the spacing between atoms. Of 
course the path difference here as well can be 1,2, 3, …,n, times λ. Leading to a series of tightly spaced peaks

At much lower angles than Bragg 
diffraction, there must be a “Bragg’s law” 
for constructive interference from the top 
and the bottom of the thin film



X-ray reflectivity from a thin film

ΔQ between two oscillations 
correlates to film thickness D=2π/ΔQ

Second, much longer 
periodicity must correspond to 
a second very thin layer 
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