A scattering experiment - wave picture

We admit that only the time averaged Intensity can be measured and that the point scatterers can be described as

$$
\rho(\mathbf{r})=\sum_{j=1}^{N} \hat{A}_{j} \delta\left(\mathbf{r}_{\mathbf{j}}\right)
$$

Fourier transform: useful relations

$$
I=<\left|\sum_{j=1}^{N} \hat{A}_{j} e^{i\left(\mathbf{k}_{\mathbf{f}}-\mathbf{k}_{\mathbf{i}}\right) \cdot \mathbf{r}_{\mathbf{j}}} e^{i \omega t}\right|^{2}>_{t}=\rho \rho(\mathbf{r}) e^{\left.i @ \cdot \mathbf{r} \cdot \mathbf{d r}\right|^{2}, ~}
$$

1. Linearity: The FT of $\rho(\vec{r})=f(\vec{r})+g(\vec{r})$ is

$$
F T[f(\vec{r})+g(\vec{r})]=F T[f(\vec{r})]+F T[g(\vec{r})]
$$

Fourier

Transform of the charge density distribution ρ from R space to\boldsymbol{Q} space
2. Convolution:

$$
\rho(\vec{r})=\int f(\vec{\xi}) g(\vec{r}-\vec{\xi}) \overrightarrow{d \xi}
$$

$$
F T[f(\vec{r}) * g(\vec{r})]=F T[f(\vec{r})] \bullet F T[g(\vec{r})]
$$

FT " converts" a convolution in a product and vice versa

Scattering of x-rays by electrons and crystals

Momentum transfer q, unit: $1 / \mathrm{m}$. Is the best defined measurable quantity in an experiment.
The scattering angle is useless without information on the wavelength. An adapted choice for a reciprocal orientation space will be very useful to understand scattering experiments

$$
\vec{q} \text { or } \vec{Q}=\left(\vec{k}_{f}-\vec{k}_{i}\right) ;|q|=q=\frac{4 \pi \sin \theta}{\lambda}
$$

$$
I(k)=\left(\int \rho(r) e^{i \vec{q} \vec{r}} \vec{r} d \vec{r}\right)^{2}
$$

Intermezzo: few practical aspects of momentum space

Intermezzo: few practical aspects of momentum space

Concept of reciprocal space and practicality in experiments

- Makes it easy to compare different scattering experiments (this point is essential as Cu K-alpha wavelength is less and less a "world standard")
- Quick interpretation possible, peak width of harmonic peaks (110220330 etc.) can be extracted and interpreted (angular space is useless for peak width analysis)
- Quantity of Momentum Transfer best suited and most widely used is \AA^{-1}, in diffraction, the SAXS community tends to use nm^{-1}. With the convenient definition of the wavevector $k=2 \pi / \lambda$, the momentum transfer Q results in $Q=4 \pi^{*} \sin \theta / \lambda$.
- This leads to the relation $Q_{h k l}=2 \pi / d_{h k l}$ linking momentum transfer to d-spacing of a certain reflection.
- When moving beyond structure determination (most cases you may work on), any high resolution analysis of a Bragg peak makes much more sense in reciprocal space than in angular space

Tobias Schulli AIBN Lecture Series

Size broadening and strain gradient broadening

 strain may lead to lattice parameter gradients within one crystal. The resulting distribution Δd lattice parameter and its impact on the peak width ΔQ in reciprocal space Q can be obtained by looking at the first derivative of Q assuming a d-spacing change Δd :$Q=\frac{4 \pi \sin \theta}{\lambda}=\frac{2 \pi}{d} \quad \frac{\Delta Q}{\Delta d}=-\frac{2 \pi}{d^{2}}$

Strain broadening is a constant Qalue (here for harmonic peaks, as in case of anisotropy this may not be true).
Strain broadening increases in Q

Instrumental influences for peak broadening (examples)

Peak Broadening by spectral bandwidth $\Delta \lambda$
$Q=\frac{4 \pi s}{\lambda},->\frac{\Delta Q}{\Delta \lambda}=-\frac{4 \pi \sin \theta}{\lambda^{2}} \rightarrow \Delta Q(\Delta \lambda)=\frac{4 \pi \sin \theta}{\lambda^{2}} \Delta \lambda=Q * \frac{\Delta \lambda}{\lambda}$,
"equivalent" to strain broadening
$\Delta \theta$: convergence angle

Peak Broadening by beam divergence $\Delta \Theta$:

$$
\begin{aligned}
& Q=\frac{4 \pi \sin }{\lambda}, \rightarrow \frac{\Delta Q}{\Delta \theta}=\frac{4 \pi \cos \theta}{\lambda}-> \\
& \Delta Q(\Delta \theta)=\Delta \theta \frac{4 \pi \cos \theta}{\lambda}=\Delta \theta \frac{Q}{t a}
\end{aligned}
$$

("Peak Broadening") as a function of Beam divergence $\Delta \theta$

Peak broadening, how to deal with

-it contains information that should be exploited
-It teaches us to look at integrated intensities (Peak areas), rather than peak "heights"

Divergence: $\Delta Q(\Delta \theta)=\Delta \theta \frac{Q}{\tan \theta}$
All these contributions mix... in the form of convolutions
Bandpass: $\Delta Q(\Delta \lambda)=Q * \frac{\Delta \lambda}{\lambda}$
Strain: $\Delta Q(\Delta d)=\frac{\Delta d}{d} Q$
Size $D: \Delta Q(D)=\frac{2 \pi}{D}$
FWHM (result)=
FWHM (curve1) + FWHM(curve2)......... $\sqrt{F W H M(c u r v e 1)+F W H M(c u r v e 2)}$
The truth is in general somewhere in between...... depends on the shape of the peaks
Tobias Schulli AIBN Lecture Series

Peak broadening, how to deal with

-it contains information that should be exploited
-It teaches us to look at integrated intensities (Peak areas), rather than peak "heights"

$$
\begin{gathered}
\text { Divergence: } \Delta Q(\Delta \theta)=\Delta \theta \frac{Q}{\tan \theta} \\
\text { Bandpass: } \Delta Q(\Delta \lambda)=Q * \frac{\Delta \lambda}{\lambda} \\
\text { Strain: } \Delta Q(\Delta d)=\frac{\Delta d}{d} Q \\
\text { Size D : } \Delta Q(D)=\frac{2 \pi}{D}
\end{gathered}
$$

For $\mathrm{Q}=0$ only divergence and size contributions $->$ the minimum crystallite size can be estimated to be $D>$
$\frac{2 \pi}{0.002} \sim 3000 \AA(300 \mathrm{~nm})$

A bit more about Crystallite size D

Particle size (D) broadening: $\quad \Delta Q(D)=\frac{2 \pi}{D} \quad \begin{aligned} & \text { No } Q \text { - } \\ & \text { dependence }\end{aligned}$

If no other broadening effects are involved the size D can be extracted from any Bragg peak

A similar formula often cited is the Scherrer formula:

Hi...

In my today's tutorial, I will show you how to calculate crystallites size and average crystallites size from XRD data using Scherrer equation.

$$
\begin{equation*}
D=\frac{K \lambda}{\beta \cos \theta} \tag{1}
\end{equation*}
$$

Where,
$D=$ crystallites size (nm) $\quad \beta=F W$ in rad
$K=0.9$ (Scherrer constant)
$\lambda=0.15406 \mathrm{~nm}$ (wavelength of the x-ray sources)

Tobias Schulli AIBN Lecture Series

General remark:
Be careful about what result you expect from particle size

What ever you extract, call it rather 200 nm instead of 218.67 nm However, if you stick to one method and compare different samples, relative differences may well be tracked down to few \%

A bit more about Crystallite size D

$\lambda=0.15406 \mathrm{nn}$
$\boldsymbol{\beta}=\mathrm{FWWHM}$ (r
$\theta=$ Peak posit
First, we need XRD data the calculation of ,

Lets' start...

$\cap \cap \cdots$Book2

| | $\operatorname{ppos} Q(X)^{\circ}$ | $\operatorname{ppos}(Y)$ | $f w q(Y)$ |
| :--- | :--- | :--- | :--- | :--- |
| Long Name | $f w(Y)$ | | |

n Q-space things are linear that weren't linear before

- fwa - Linear Fit fwq

At $\mathrm{Q}=0$, particle size dominates all other influences on peak broadening \sum -
Ooviments

Examples for typical crystals and limits of these considerations for peak shapes

As a start, we clearly have to differentiate between
1.) Powders
2.) (perfect) monocrystals
3.) Ideal imperfect crystals ("real" monocrystals) and perfect thin films
2.) Sounds easy but is the worst, so lets start with 3.) and the example of a thin film: goal: understanding peak Intensities

"Crystallography"= study of periodic objects

But in the end, what we are interested in may well be "the object"
A Crystal is an object associated with a regular (periodic or non-periodic) grating, defining its repetition

"Object" leads to a structure that determines the height of the peaks

Crystallography: We can only sample the read curve in distinct points, but a precise knowledge of the red curve is required to resolve an image of the "object"

Tobias Schulli AIBN Lecture Series

Scattering from an Atom

Scattering from an Crystalline thin block

Being a periodic arrangement of atoms a crystal can be "built" using a periodic arrangement of delta-functions convoluted with one atom (or a unit cell). A convolution in real space becomes a product in reciprocal space

Big crystals: sharp peaks, small crystals: narrow peaks. Peak intensities depend on the structure factor.

Diffraction from a thin film, simplified approach

We recall: The function describing intensity distribution in reciprocal space is related to the Fourier Transform of the distribution of scatterers in real space.

If we try to understand the building blocks of materials we can eventually treat their Fourier Transforms separately and use then these building blocks to built up reciprocal space.

What we are looking for is a set of lego pieces that we can decompose and recompose freely when moving from reciprocal space to real space

Diffraction from a thin film

Reciprocal space consideration in a wider sense....

With reflection of X-ray light from the top and the bottom of a thin film there ${ }^{X}$ ust also be a "Bragg-condition", but at very low angles of incidence, as the film thickness is "much thicker" than the spacing between atoms. Of course the path difference here as well can be $1,2,3, \ldots, n$, times λ. Leading to a series of tightly spaced peaks

At much lower angles than Bragg diffraction, there must be a "Bragg's law" for constructive interference from the top and the bottom of the thin film
[1] H. Kiessig (1931)
„Interferenz von Röntgenstrahlen an dünnen Schichten". Annalen der Physik 10, 769-87.

X-ray reflectivity from a thin film

