
X-ray reflectivity from a thin film

ΔQ between two oscillations 
correlates to film thickness D=2π/ΔQ

Second, much longer 
periodicity must correspond to 
a second very thin layer 
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From Reflectivity to diffraction

Reflectivity: Continuum description of Material is enough. 
Reality: “granular” description of a point lattice is required (otherwise 
there may well be reflectivity but no Bragg peaks)

z

If we look only at momentum transfers along z (“The 
specular path”), we can look at the scattered 
amplitude of light from a linear chain of atoms along 
z with a well defined truncation on top and bottom 
of the film.



Diffraction Amplitude from a linear chain
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Diffraction amplitude from a linear chain as 
model for a thin crystalline film



From thin films to normal crystals
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Ideal thin film: 
What has been neglected ? 
What parameters can be 
extracted ?
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Periodicity in reciprocal space
2π(periodicity in real space)-1

The use of reciprocal space (=Fourier space)  becomes practical when we look at periodic objects or well truncated objects

Our film (“atomic 
grating”) contains 50 
subunits (= atoms)

Periodicity in reciprocal space ΔQ=0.0419 Å-1

= 2π(size in real space)-1=150Å film thickness

Qhkl=2.0944 Å-1, 
->𝑑 = = 3Å

Qhkl=4.1888 Å-1, 
->𝑑 = = 1.5Å



From thin films to normal crystals

Thin film or crystals with 
identical sizes (50 atoms in 
size)

9 different sizes between 40 and 60 atoms 
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Effect of size distribution on Full Width at Half Maximum of Bragg Peak

Size distribution only washes out finite size 
oscillations and modifies eventually the 
shape of the central maximum. 
The FWHM for the central maximum 
corresponds however very well to the 
average crystallite size. It is a very powerful 
tool for the evaluation of this parameter

FWHM~ 0.035 Å-1 -> 
mean size= 

.  Å−1=170 Å

A more detailed 
consideration leads to the 



Differently shaped particles

1E-3

0.01

0.1

1

L
og

 (
N

or
m

a
liz

ed
 I

nt
en

si
ty

)

 (sinx/x)**2, ~ thin film

 Bessel, 4*(J1/x)2 ~circular 
cross-section

Again, the width on the central 
maximum depends only poorly 
on the particle shape, it is a very 
good reference to its average 
size D. This size is derived in a 
first approximation from the 
with ΔQ of the Bragg peak in 
reciprocal space:

∆
or 

D

D

∆𝑥∆𝑝 ≥ (1)

Philosophically looking at sharp Bragg peaks means determining the momentum of a 
photon with great precision. This is why a small (narrow width) must be related 
to an uncertainty of the crystals size it has been interacting with

ℎ: Planck’s constant

Heisenberg:

FWHMBraggPeak~ 1/(Crystal size D)
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Further quantification of peak properties: height and area
Bragg intensity from a perfect small crystal 𝑁 = 50 atoms 
in size  grown along axis a:

This oscillatory term leads to strong peaks whenever 
⁄ ∗ q ∗ 𝑁 ∗ 𝑎 is an integer multiple of 𝜋, thus 

whenever q ∗ 𝑎 = 𝑛 ∗ 2π
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We know that FWHMBraggPeak~ 1/𝑁
What is the influence of 𝑁 on the peak height ? 
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Further quantification of peak properties: height and area
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1 y=x
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y=sinx

For 𝑥 ≈ 0, 𝑠𝑖𝑛𝑥 ≈ 𝑥

We know that FWHMBraggPeak~ 1/𝑁
What is the influence of 𝑁 on the peak height ? 

If ⁄ ∗ q ∗ 𝑁 ∗ 𝑎 ≈0 
and ⁄ ∗ q ∗ 𝑎 ≈ 0 ∗ ⁄ ∗ ∗ ∗

⁄ ∗ ∗
*

The Peak Intensity IP (height) is thus proportional to 𝑁  

The Peak Width FWHM is proportional to 1/𝑁

The peak Area, the integrated intensity of the Bragg Peak is 
thus proportional to IP * FWHM and thus proportional to 
𝑁  , i.e. the number of atoms in the crystal

This is the basis of all structure resolution and refinement using XRD !!!



Further quantification of peak properties: height and area
Leads to an integrated intensity ~𝑁  

It is obviously proportional to 𝑓 , with 𝑓 being the atomic scattering 
factor. Being the Fourier transform of the electron distribution of one 
atom, 𝑓 depends itself on momentum transfer q (neglected on the 
previous pages)
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Momentum transfer q(Å-1)

 Atomic form factor of Silicon

(number of electrons)
We conclude that the peak intensity (Both, height and integrated one) are 
proportional to 𝑍 for the example of the monoatomic simple lattice 
considered here.  For a more complex structure (anything that is not 
simple cubic elemental crystal, hence almost everything) this term must 
not be the atomic scattering factor, but the Fourier transform of the 
smallest periodic unit that builts up the crystal: the unit cell. The Fourier 
transform of the unit cell is called the structure factor Fhkl. It logically 
changes for every Bragg reflection, making the integrated Bragg diffraction 
intensities sensible to the structure of the unit cell.

∗



Diffraction from crystals, 
reflections about reciprocal space distribution of intensity

X
Convol.

Grating Unit cell

= Crystal:

Fourier Transform= FT(                 )*FT(              )

Or in the simplest case = FT(        )*FT(              )
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What if there is “no grating” ?
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Scattering from a gas = atomic scattering factor
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S
(Q

)  liquid
         (6x6)

Scattering from a liquid = some local order

The separation of 
“periodicity” and 
“building blocks” is a 
Christmas present of 
Fourier space !!



∗X
Convol.

Grating Unit cell

= Crystal:

(FT of unit cell)  * (FT of grating) 

Remember: This oscillatory term leads to strong 
peaks whenever ⁄ ∗ q ∗ 𝑁 ∗ 𝑎 is an integer 
multiple of 𝜋, thus whenever q ∗ 𝑎 = 𝑛 ∗ 2π

a ∗ 𝑞 , b ∗ 𝑞 , c ∗ 𝑞 = n ∗ 2π

𝑎
0
0

∗

𝑞
𝑞
𝑞

= a ∗ 𝑞 = n ∗ 2π

Diffraction from a 3D crystal with a 3D unit cell

Or for a 3-dimensional crystal each of the products :

𝑁

𝑁

a=1

b=1

a=2

b=2

b=3

a=3



X
Convol.

Grating Unit cell: crystal system: cubic (simple)

= Crystal:

I(powder)=M*(FT of unit cell)  * (FT of grating) 

(Powder) Diffraction from a 3D crystal with a 3D unit cell

𝑁

𝑁

a=1

b=1

a=2

b=2

b=3

a=3

Simple cubic structure: 1 Atom in unit cell, no symmetry operations (“simple”)

FT of one atom, should give a “smooth” envelope

 

 

…

Multiplicity M, changes the intensities
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111 200



X
Convol.

Grating Unit cell: crystal system: cubic (fcc)

= Crystal:

I(powder)=M*(FT of unit cell)  * (FT of grating) 

(Powder) Diffraction from a 3D crystal with a 3D unit cell

𝑁

𝑁

a=1

b=1

a=2

b=2

b=3

a=3

Face centered cubic structure (fcc): 2 symmetry equivalent Atoms in unit cell

Still only one Atom, but on two symmetry equivalent sites: Many peaks are 
extinguished due to destructive interference between the two sites: This 
leads to “selection rules” specific to the fcc lattice: 
All peaks with h,k,l all even or all odd are allowed, h,k,l mixed are 
“forbidden”= extinct

The relative intensities of the 
remaining peaks are not affected by 
these extinction rules; they just lead 
to “missing peaks”. As these peaks 
are forbidden due to the fcc lattice 
they are called “lattice forbidden 
reflections”.

Examples for fcc: most metals

200

111

220 311
222



X
Convol.

Grating Unit cell : crystal system: cubic (fcc)+basis (more atoms in unit cell)

= Crystal:

I(powder)=M*(FT of unit cell)  * (FT of grating) 

(Powder) Diffraction from a 3D crystal with a 3D unit cell

𝑁

𝑁

a=1

b=1

a=2

b=2

b=3

a=3

Face centered cubic structure (fcc): 2 symmetry equivalent Atoms in unit cell, 
Basis contains only one atom that is reproduced on the corners and faces (fcc…)
Here: Basis contains a second atom at position 0.25, .25, .25. All other fcc atoms 
are just “doubled” to sit on equivalent positions -> two interpenetrating fcc
lattices. 

The same selection rules as for fcc
apply, and additional ones maybe 
introduced, wherever the two fcc
lattices are in destructive interference. 
There are now “basis forbidden” 
reflection that “add” to the “lattice 
forbidden” reflections

Examples: Si, Diamond



Examples for typical crystals and limits of these 
considerations for peak shapes
As a start, we clearly have to differentiate between
1.)Powders
2.) (perfect) monocrystals
3.) Ideal imperfect crystals (“real” monocrystals) and perfect thin films

We have looked at 3.) with the example of a thin film or a “small 
crystal” goal: understanding peak Intensities. 
What about 2.) ?



Intensity/ peak shape from “Bigger” Crystals
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⃗

Incoming plane wave
𝐼 = |𝐴|

Represented by “thickness”

(hkl) Bragg reflection:

𝐴 =

𝐹 𝑒 ⃗

= 𝐹 𝑒

1

𝑁

From before we know that (Peak)~ 2  and (Integrated)~ , =const.

𝐼 = |𝐴 |

But, for reasons of Energy conservation (Peak)<

Fraunhofer diffraction 



X-ray absorption and peak shapes: 
⃗

Incoming plane wave

𝐼 = |𝐴|

(hkl) Bragg reflection:

µ

1𝑁

𝐼 = |𝐴 |
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X-ray absorption and peak shapes: Ge-film (001) oriented 
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Real peak shapes of real perfect crystals

⃗

Incoming plane wave
𝐼 = |𝐴|

Represented by “thickness”

(hkl) Bragg reflection:

𝐴 =

𝐹 𝑒 ⃗

= 𝐹 𝑒

1

𝑁

𝐼 = |𝐴 |

Under Bragg conditions in perfect crystals, 
Absorption does not limit the penetration depth…

…but a process called “extinction”, i.e. the 
weakening of the electric field by scattering, 

This is requires a complete treatment of the 
interaction between a plane wave with a lattice, 
including the presence of multiple scattering events. 
All derivations above and structure analysis as a 
whole depend on what is called the “kinematic 
scattering theory. 
The strength of X-ray (and neutrons), as compared 
to electrons is that in general this assumption is valid



Resolving (finding…, guessing…) Structures by X-ray diffraction
Distances, angles and “structure factors” make up the decisive information

Depending on the type of radiation and the characteristics of our sample they can be measured (or not)

Distances: “easy”

Structure factors: +- difficult, depends a bit on “how good is good”:

Integrated Bragg Intensity=Fhkl*(crystallite size)*(Incoming flux)*(other factors….)
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Qhkl=2.0944 Å-1, 
->𝑑 = = 3Å

Qhkl=4.1888 Å-1, 
->𝑑 = = 1.5Å

Powder: “set of distances”+ 
your imagination=

Angles: +- difficult

Monocrystalline diffraction: 
set of distances and angles


