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X-ray reflectivity from a thin film
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From Reflectivity to diffraction

Reflectivity: Continuum description of Material is enough.

Reality: “granular” description of a point lattice is required (otherwise
there may well be reflectivity but no Bragg peaks)

T NN R e et I If we look only at momentum transfers along z (“The
RS A T specular path”), we can look at the scattered
EREEE SRS S A A A AT amplitude of light from a linear chain of atoms along
) ; «_sﬁxogj?i;}‘}f}iigg;{“ z with a well defined truncation on top and bottom
SRS P bl i My of the film.
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Diffraction Amplitude from a linear chain
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Diffraction amplitude from a linear chain as
model for a thin crystalline film

“— - O ( @ www.schulli.fr,
PhDthesis

(contains an analytical treatment of diffraction from crystalline perfect thin films on pp42-56 and on pp 123-130)
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From thin films to normal crystals [sin(V#q N, *a) |
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Momentum transfer Q (A™) Momentum transfer Q (A™)

Periodicity in reciprocal space AQ=0.0419 A1
Periodicity in reciprocal space = 2nt(size in real space)1=150A film thickness
2n(periodicity in real space)?

The use of reciprocal space (=Fourier space) becomes practical when we look at periodic objects or well truncated objects




log(Normalized Intensity)

From thin films to normal crystals

Thin film or crystals with
identical sizes (50 atoms in
size)
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Effect of size distribution on Full Width at Half Maximum of Bragg Peak
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Function Area Gaussians ~ [ ] Weight [ Auto FWHM Configure
Background Linear ~ [ ] MCA Mode [ ] Auto Scaling Print
Fit

Parameter Estimation Fit Value Sigma Constraints Min/Para ™ ‘
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Size distribution only washes out finite size
oscillations and modifies eventually the

shape of the central maximum. ]

The FWHM for the central maximum
corresponds however very well to the
average crystallite size. It is a very powerful
tool for the evaluation of this parameter

Fraunhoferl.dat 1.1 Column 1
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Fit
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Differently shaped particles

Again, the width on the central
maximum depends only poorly
on the particle shape, it is a very
good reference to its average
size D. This size is derived in a
first approximation from the
with AQ of the Bragg peak in
reciprocal space:

D=z—gorD*AQ=2n

1

inx/x)**2, ~ thin film
essd,4%J1h02~cWCMarﬂ
cross-section
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Philosophically looking at sharp Bragg peaks means determining the momentum of a
photon with great precision. This is why a small AQ (narrow width) must be related
to an uncertainty of the crystals size it has been interacting with

Heisenberg:

AxAp = % (1) FWHM ~ 1/(Crystal size D)

BraggPeak

h: Planck’s constant




Further quantification of peak properties: height and area

Bragg intensity from a perfect small crystal N, = 50 atoms

in size grown along axis a: -
> sin(%*q*Na *q)
41 sin(}*g*a)

Ax A =

This oscillatory term leads to strong peaks whenever
1/, % q* Ny * a is an integer multiple of 7, thus
whenever q * a = n * 21
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Momentum transfer q (A™")
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Momentum transfer q (A™)

We know that FWHMg, ..opear™ 1/Ng
What is the influence of N, on the peak height ?




Further quantification of peak properties: height and area
[sin(1#q# N, xa) |
sin( 1+ *a)

1/2*q*Na*a

1/,xq*a

We know that FWHMg,..opear™ 1/Ng .
What is the influence of N, on the peak height ? A*A = fa

y=sinx

For x If1/, xq* N, xa =0

0,sinx = x
and 1/, xq*xa=0 A*A*:faz

- 2
— 2%
| = r2ena

X
The Peak Intensity |P (height) is thus proportional to Na2
1000—§ (100) (200)
'.2‘ 'IOO—E
E The Peak Width FWHM is proportional to 1/N,
10_5 The peak Area, the integrated intensity of the Bragg Peak is
| HM[\MMM MMMM MMMM MMMMM Wm | | thus proportional to |, * FWHM and thus proportional to
' T S 4 Ng,ie.the number of atoms in the crystal

Momentum transfer q (A™")

This is the basis of all structure resolution and refinement using XRD !!!




Electron units

Further quantification of peak properties: height and area

2

) Sin(% * g * Na * a) Leads to an integrated intensity YN,

a1 sin(l]
14]
12
10-
8_
6_
4_
2_
0

It is obviously proportional to f,2, with f, being the atomic scattering
* g * a) factor. Being the Fourier transform of the electron distribution of one
atom, f, depends itself on momentum transfer g (neglected on the
previous pages)

fa ~Z (number of electrons)
We conclude that the peak intensity (Both, height and integrated one) are
proportional to Z? for the example of the monoatomic simple lattice
considered here. For a more complex structure (anything that is not
simple cubic elemental crystal, hence almost everything) this term must

—— Atomic form factor of Silicon ot be the atomic scattering factor, but the Fourier transform of the

smallest periodic unit that builts up the crystal: the unit cell. The Fourier
transform of the unit cell is called the structure factor F, . It logically

o 1 2 3

4
Momentum transfer q(A"1)

AxA" = Fi%kl(‘])

5 changes for every Bragg reflection, making the integrated Bragg diffraction
intensities sensible to the structure of the unit cell.

2
sin(l/z xq* Ny *a)
sin(l/, * q )




Diffraction from crystals,
reflections about reciprocal space distrj

Grating

Convol.

= Crystal:

The separation of
“periodicity” and
“building blocks” is a
Christmas present of
Fourier space !l




Diffraction from a 3D crystal with a 3D unit cell

Gratin Unit cell
2 : O 0O (FTof unitcell) * (FT of grating)

w AxA" =

Convol. o o k Sin(l/z *q, * Ny, x a) Sin(l/z * qp * Ny * b)
= Crystal: Fhia (q) .1 a1
: AL i sin(/5 * qq * ) sin(1/, * q, * b)
a= = 5
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oh O {-\',: } {‘( % /’"\' 2 qC (6§
W V0™ Q{ Z_ pb=1 * 1
' sin(*/5 * q¢ * ¢)
h ,r‘\ O ~ Remember: This oscillatory term leads to strong
- W f_} C =4 b=2 peaks whenever 1/, * q * N, * a is an integer
multiple of , thus whenever q * a = n * 21
160 LY = a dx
T vV AV 0|*|qy |=a*q,=n=x2m
 of - b=3 O qz

Or for a 3-dimensional crystal each of the products :

uﬂ( O o O I a*qyb*qy,cxq, =nx2m
b




(Powder) Diffraction from a 3D crystal with a 3D unit cell

Grating Unit cell: crystal system: cubic (simple)
l(powder)=M*(FT of unit cell) * (FT of grating)

® Simple cubic structure: 1 Atom in/unit cell, no symmetry operations (“simple”)
Convol. Y
of one atom, should give a/“smooth” envelope
- Crystal: Multiplicity M, changes the intensities '
a:l a=2 a=3
> Na
92 ¢0 40 .0 .,
90 — /,/
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(Powder) Diffraction from a 3D crystal with a 3D unit cell

Grating Unit cell: crystal system: cubic (fcc)
® l(powder)=M*(FT of unit cell) * (FT of grating)

Face centered cubic structure (fcc): 2 symmetry equivalent Atoms in unit cell

Convol. Still only one Atom, but on two symmetry equivalent sites: Many peaks are
extinguished due to destructive interference between the two sites: This
= Crystal: leads to “selection rules” specific to the fcc lattice:
All peaks with h,k,| all even or all odd are allowed, h,k,| mixed are
“forbidden”= extinct
b=1 100 The relative intensities of the
20 remaining peaks are not affected by
0 these extinction rules; they just lead
70 11  to “missing peaks”. As these peaks
b=2 2 o are forbidden due to the fcc lattice
5§ 59 they are called “lattice forbidden
T A reflections”.
30—
b=3 20 200 220 311
10} l izzz
& }
N b I T ' 210 ' 3r0 ' 410 ' 5r0 ' 610 ' 7r0 ' 8]0 1 QI—O

10
Examples for fcc: most metals 2 theta (degree)




(Powder) Diffraction from a 3D crystal with a 3D unit cell

Grating Unit cell : crystal system: cubic (fcc)+basis (more atoms in unit cell)
l(powder)=M*(FT of unit cell) * (FT of grating)

Face centered cubic structure (fcc): 2 symmetry equivalent Atoms in unit cell,

Basis contains only one atom that is reproduced on the corners and faces (fcc...)
Here: Basis contains a second atom at position 0.25, .25, .25. All other fcc atoms

Convol.

= Crystal: are just “doubled” to sit on equivalent positions -> two interpenetrating fcc
a=2 lattices.
b=1 e The same selection rules as for fcc
e apply, and additional ones maybe
B introduced, wherever the two fcc
Ll lattices are in destructive interference.
b=2 z 7 There are now “basis forbidden”
£ M reflection that “add” to the “lattice
T A forbidden” reflections
30 —
3 20 —
10 —
; I
7 . | > | < | . | - | ? 1 : | J | . |
Nb 10 20 30 40 50 60 70 80 90

Examples: Si, Diamond 2 theta (degree)




Examples for typical crystals and limits of these
considerations for peak shapes

As a start, we clearly have to differentiate between

1.)Powders

2.) (perfect) monocrystals
3.) Ideal imperfect crystals (“real” monocrystals) and perfect thin films

We have looked at 3.) with the example of a thin film or a “small
crystal” goal: understanding peak Intensities.

What about 2.) ?




Intensity/ peak shape from “Bigger” Crystals

Fraunhofer diffraction

T > 1_:
A=A, el((ot+kr) |
) (hkl) Bragg reflection:
Incoming plane wave .
. —~ 0.1
. I = |Apal® 2 5
Iy = |Al¢ %
Represented by “thickness” =
@ 0.014
N ]
g
5}
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From before we know that I,y (Peak)~Iy x Nz* and Iy (Integrated)~Iy * Ny, if N,, N;=const.

But, for reasons of Energy conservation I ;;(Peak)<I,




X-ray absorption and peak shapes:

E e A= AO el(wt+k'r) (hkl) Bragg reflectlon:
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Intensity

X-ray absorption and peak shapes: Ge-film (001) oriented

Very weak absorption

Thickness L

Thickness 3L
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Real peak shapes of real perfect crystals

Under Bragg conditions in perfect crystals,
Absorption does not limit the penetration depth...

A=A ei(wt+7(>7_‘>)
(0}
Incoming plane wave

2
Iy = |Al¢
Represented by “thickness”

(hkl) Bragg reflection:

Ly = |Apia|?

A ...but a process called “extinction”, i.e. the
N Aod ifggfgasfzﬁz;; 2333 FF it weakening of the electric field by scattering,
= . Rty O R F g S AT
lqr :E§§§=;5353~:°‘~ js%z s B g 3)5 = g:océ;zgfs;;g < n h
§ Fhiae $2iPiCo Iy s 05 £ E 023 This is requires a complete treatment of the
1 PIIRPE SRS S A ST SER g, interaction between a plane wave with a lattice,
Nz 3833 RE F 5 F8 s v s SN s SFsEE . . . ,
SLERESE S S S SRR RIREs including the presence of multiple scattering events.
= 1q 23322 £3 i e et tl - .
, Fprie™z Mty Ry F g S N Wt it I All derivations above and structure analysis as a
LD Ry R g e L
1 y° s mememem e e whole depend on what is called the “kinematic

i

scattering theory.
The strength of X-ray (and neutrons), as compared
to electrons is that in general this assumption is valid




Resolving (finding..., guessing...) Structures by X-ray diffraction

Distances, angles and “structure factors” make up the decisive information

Depending on the type of radiation and the characteristics of our sample they can be measured (or not)
Q,,=2.0944 A1,

2T

_>dhkl = — = 3/&
. «“ ” le
Distances: “easy 1.0
Powder: “set of distances”+
0.8 your imagination=
2z
‘®
| difficul g o5
. = C 1 o
Angles: +- difficult % _ Q,=4.1888 AL,
N 2T o
T i >dp E— = 1.5A
§ - RELT™ Qp
o
= Monocrystalline diffraction:
®271  set of distances and angles
0.0 \NW

N -

0 I 1 2 3
Momentum transfer Q (A™)

Structure factors: +- difficult, depends a bit on “how good is good”:

Integrated Bragg Intensity=F,*(crystallite size)*(Incoming flux)*(other factors....)




