
… to be continued (from week of July 22nd, 4 more lectures)
A closer look on Fhkl applications and examples of integrated intensities, graphical 
representation of the complex scattering factor
We will quickly discuss other factors affecting the intensity

Examples of scattering experiments and extraction of information beyond structure 
resolution & beyond average strutcures

About x-ray sources/ optics and their influence on our data

Why are synchrotron sources so powerful ?

V1=30 Km/h V2=30 Km/h

Vrelative=60 Km/h
=59.9999999999997916 This “error” makes Synchrotrons 1 Trillion (!) times more brilliant

Twin paradox 
& contraction 
of space



Goal of today: The structure factor, and how to make use of it

Emerald

Sapphire



A scattering experiment – wave picture

103

Plane wave approach

At the observation point we record 

We admit that only the time averaged Intensity can be 
measured and that the point scatterers can be described as 

Fourier Transform (complex) from space r to space Q
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This integration or summing up leads to the Fourier Transform from real space 𝑟 to reciprocal space 𝑞⃗=(𝑘𝑓 − 𝑘𝑖)



Fourier Transform – applied to crystals 
We recall that convolutions lead to products in Fourier space and vice versa: f(r)Xg(r)=F(q)*G(q)

X: convolution;     *: product f(r)*g(r)=F(q)XG(q) 

X=
Grating Leads to regular “Bragg” peaks
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“Object” leads to a structure that 
determines the intensity of the peaks

f(r)    X       g(r)
“Unit cell” “grating”

Becomes F(q)*G(q)

The separation of lattice and its internal structure is the 
powerful basis of structure resolution in Fourier space

1            2          3   …. N
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Recall: Quantification of lattice peak properties: height and area

0 1 2 3 4
-1

0

1 y=x

Y

X

y=sinx

For 𝑥 ≈ 0, 𝑠𝑖𝑛𝑥 ≈ 𝑥

We know that FWHMBraggPeak~ 1/𝑁௔

What is the influence of 𝑁௔ on the peak height ? 

If ଵ ଶ⁄ ∗ q ∗ 𝑁௔ ∗ 𝑎 ≈0 
and ଵ ଶ⁄ ∗ q ∗ 𝑎 ≈ 0

∗ ௔

ଶ

௔
ଶ

The Peak Intensity IP (height) is thus proportional to 𝑁௔
ଶ 

The Peak Width FWHM is proportional to 1/𝑁௔

The peak Area, the integrated intensity of the Bragg Peak is 
thus proportional to IP * FWHM and thus proportional to 
𝑁௔ , i.e. the number of atoms in the crystal

This is the basis of all structure resolution and refinement using XRD !!!
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f(r)    X       g(r)
“Unit cell” “grating”

Becomes F(q)*G(q)
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For a 3-dimensional crystal this leads 
to peaks whenever:

Fourier Transform – lattice and structure factor 

a ∗ 𝑞௫

2π
= h ∩ 

b ∗ 𝑞௬

2π
= k ∩ 

c ∗ 𝑞௭

2π
= l,
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= 𝐹 𝑞⃗ ∗ 𝐺(𝑞⃗)

Or for a 3-dimensional crystal this leads to peaks whenever
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f(r)    X       g(r) Becomes F(q)*G(q)

Fourier Transform – lattice and structure factor, a very full slide !!!

a ∗ 𝑞௫

2π
= h ∩ 

b ∗ 𝑞௬

2π
= k ∩ 

c ∗ 𝑞௭

2π
= l, 

and h, k, l integers that we will use to "name" our peak 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔, 
these allow us to extract the basic periodicities

The intensity of this peak depends on……

Lattice

Structure



A closer look on 

With the plane wave approach we obtained the scattering amplitude from an object to be its 
Fourier Transform from 𝑟-space into 𝑞⃗-Space, with 𝑞 =

ସగ௦௜௡

஛
, 

With the convolution theorem, we can separately look at the contributions from lattice and Structure Factor
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Fourier Transform

q(Å-1)

And we know that 𝐹 𝑞⃗ is only measured at positions 𝐹ℎ𝑘𝑙 𝑞⃗ with as   ୟ∗௤ೣ
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And we know that 𝐹 𝑞⃗ is only measured at positions 𝐹ℎ𝑘𝑙 𝑞⃗ with as   𝑞௫ = ℎ
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A closer look on 
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This leads us to 
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𝑟𝑖 = 𝑢𝑖 ∗ 𝑎⃗ + 𝑣𝑖 ∗ 𝑏 + 𝑤𝑖 ∗ 𝑐

𝑎⃗ 𝑏

𝑐

Where 𝑢𝑖 𝑣𝑖 𝑤𝑖 are the real space coordinates expressed in unit cell parameter fractions, 
𝑓௜ describes the atomic scattering factor (how strong an atom scatters)-> atomic amplitude

𝑒௜ଶ஠(௛௨௜ା௞௩௜ା௟௪௜) can best be named the “atomic phase”



A closer look on- - simple examples 
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Where 𝑢𝑖 𝑣𝑖 𝑤𝑖 are the real space coordinates expressed in unit cell parameter fractions, 
𝑓௜ describes the atomic scattering factor (how strong an atom scatters)
𝑒௜ଶ஠(௛௨௜ା௞௩௜ା௟௪௜) can best be named the “atomic phase”
The sum has to run over all atoms “ i ” inside the unit cell. 
Per definition this means al atoms with coordinates 0 ≤ 𝑢𝑖, 𝑣𝑖, 𝑤𝑖 <1

Simple cubic, how many atoms ?

ℎ𝑘𝑙 = ௉௢
௜ଶ஠(௛∗଴ା௞∗଴ା௟∗଴)஺௧௢௠ ௜ୀଵ
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Same structure factor for every Bragg Peak !

=1



A closer look on- - simple examples 
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Where 𝑢𝑖 𝑣𝑖 𝑤𝑖 are the real space coordinates expressed in unit cell parameter fractions, 
𝑓௜ describes the atomic scattering factor (how strong an atom scatters)
𝑒௜ଶ஠(௛௨௜ା௞௩௜ା௟ ௜) can best be named the “atomic phase”
The sum has to run over all atoms “ i ” inside the unit cell. 
Per definition this means al atoms with coordinates 0 ≤ 𝑢𝑖, 𝑣𝑖, 𝑤𝑖 <1

FCC, how many atoms ?
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Leads to “selection rules” for monoatomic fcc (or fcc with monoatomic basis):
𝐹ℎ𝑘𝑙=4𝑓஺௨ for h,k,l = all even or all odd
𝐹ℎ𝑘𝑙=0 for h,k,l= mixed

𝑒௜∗ଷ/ଶπ = −𝑖
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Scattering at a certain momentum 
transfer (depends on observation point)
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A closer look on- - simple examples 

ℎ𝑘𝑙 = ஺௨
௜ଶ (௛∗଴ା௞∗

భ

మ
ା௟∗

భ

మ
)

௜ଶ஠(௛∗
భ

మ
ା௞∗଴ା௟∗

భ

మ
) ௜ଶ஠(௛∗

భ

మ
ା௞∗

భ

మ
ା௟∗଴)

Incoming wave

For h,k,l= 1,1,1:

We measure I = |𝐹ℎ𝑘𝑙 𝑞⃗ |2!!!

= 4𝑓஺௨



ℎ𝑘𝑙 = ௜
௜ଶ஠(௛௨

௜
ା௞௩

௜
ା௟௪

௜
)஺௧௢௠ ௜ୀே

஺௧௢௠ ௜ୀଵ

Scattering at a certain momentum 
transfer (depends on observation point)
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Incoming wave

For h,k,l= 1,0,1:

=0



A closer look on- - simple examples 

ℎ𝑘𝑙 = ௜
௜ଶ஠(௛௨

௜
ା௞௩

௜
ା௟

௜
)஺௧௢௠ ௜ୀே

஺௧௢௠ ௜ୀଵ

Silicon: FCC with two atomic basis, shifted by ( ¼, ¼, ¼ )
-> 2x4=8 atoms in the unit cell
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FCC selection rules will continue to exist:
𝐹ℎ𝑘𝑙=0 for h,k,l= mixed (“lattice forbidden”)
𝐹ℎ𝑘𝑙=0 for h,k,l= 2n+2 (“basis forbidden”)
𝑒𝑙𝑠𝑒 𝑓𝑜𝑟 𝐹ℎ𝑘𝑙=8𝑓ௌ௜ for h,k,l all even
For h,k,l all odd ?

( ¼, ¼, ¼ )
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For example 
(2 0 0 )

For example (111) 𝐹ℎ𝑘𝑙 𝑞⃗ =4 2
 

𝑓ௌ௜

In GaAs, InAs or ZnS, 
(Zincblende structure), 
These two fcc lattices are 
occupied by different atoms 
and F200~fGa-fAs



Structural analysis as an approach to specific questions –
Where to look in F(q)

Example: Oxygen vacancies in monoclinic CuO,  

110 planes contain Cu and O atoms, an intermediate plane contains only Cu atoms 
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We obtain 4x the projected length, -> 

𝐹110 =4*fO* cos[(1-0.84)π]=3.505*fO

𝑒௜∗଴.଼ସ∗π
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Structure resolution from a powder pattern

The intensity (integrated) of a Bragg peak 
depends essentially on the structure factor: 
Ihkl ~|Fhkl|2

It is important to note a certain other factors that 
impact the intensity of Bragg peaks
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Intensity corrections , technical corrections

When treating a complete powder pattern in order to resolve a structure, the exact relative 
intensity of all peaks is of relevance

Corrections that come with the instrumental setup have thus to be taken into account. 
Some are intrinsic and taken into account by the refinement software. Nevertheless this 
will some careful input given by the user; examples are polarization correction and 
Lorentz correction. These can even be extracted from calibration standards.
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Further instrumental corrections/ problems may come from limited angular resolution 
(“resolution function”). This does not represent a principal problem for structure resolution but 
may have practical consequences. -> knowledge about the beam preparation can be useful



Intensity corrections , sample specific

Thermal motion of atoms on the lattice. 
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We recall the atomic form factor: 

Decreases in for higher momentum transfer as an atom is not  point 
object but a “blurred” e-cloud.

Thermal motion blurs this even more 
-> Bragg intensities decrease with increasing temperature
-> this effect is stongly q-dependent
-> this effect is likely to affect some atoms more than others
-> is likely to be anisotropic



Intensity corrections , sample specific

The atomic scattering factor is strictly speaking energy-dependent (and of course q-dependent)

Cu K-alpha X-rays

The reason for this are resonant effects when the X-ray 
energy comes close to the binding energy of a specific 
electron. Varying the X-ray energy to exploit a change in 
contrast is often referred to as “anomalous scattering”, 
although “resonant scattering” would be better suited
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Interaction of X-rays ( or light) with materials

For a “free” oscillation the emission would be in the 
eigenfrequency. 
Exposed to a monochromatic light wave one expects 
however elastic scattering from a driven oscillator

Polarized electron clouds=driven harmonic oscillators, 
We recall from optics:

The refractive index is expressed as n c=polarizability Polarization P=c*Ec 1

This can find  a simple mechanical equivalent: the driven harmonic oscillator ( a popular model…. )



The dilemma of x-ray optics

Polarized electron clouds=driven harmonic oscillators

Amplitude 

22222
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 PX

For <<0: P=const. (does hardly 
vary with )

eyeglasses work for all colours, 
In this regime, refraction is 
almost achromatic

For >>0: P~1/2, thus P-> 0 

Refraction in the x-ray regime is very 
weak and highly chromatic!!, 

n   0.99999..

The refractive index is expressed as n c 1 c=polarizability

Polarization P=c*E ~ equiv. mechanical Amplitude


