... to be continued (from week of July 22", 4 more lectures)

A closer look on F,,,applications and examples of integrated intensities, graphical

. . Wy,
representation of the complex scattering factor W Yoo
We will quickly discuss other factors affecting the intensity . "S- ) '
; ‘ w“ . 'tﬂ ‘

Examples of scattering experiments and extraction of information beyond structure
resolution & beyond average strutcures

About x-ray sources/ optics and their influence on our data

Why are synchrotron sources so powerful ?

Twin paradox
& contraction
of space

V,=30 Km/h

Vrelativem

=59.9999999999997916 This “error” makes Synchrotrons 1 Trillion (!) times more brilliant




Goal of today: The structure factor, and how to make use of it
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A scattering experiment — wave picture

Plane wave approach
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At the observation point we record
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We admit that only the time averaged Intensity can be N A x
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measured and that the point scatterers can be described as
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This integration or summing up leads to the Fourier Transform from real space 7 to reciprocal space c7=(l?f - k;)




Fourier Transform — applied to crystals

We recall that convolutions lead to products in Fourier space and vice versa: f(r)Xg(r)=F(q)*G(q)
X: convolution; *: product f(r)*g(r)=F(q)XG(q)

“Unit cell” “grating”
fir) X glr)
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T T T Grating Leads to regular “Bragg” peaks
X o
T T Becomes F(q)*G(q)
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“Object” leads to a structure that
determines the intensity of the peaks

Normalized Intensity
o

The separation of lattice and its internal structure is the
powerful basis of structure resolution in Fourier space ' f\
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Momentum transfer Q (A™)




Recall: Quantification of lattice peak properties: height and area

We know that FWHMg,..opear™ 1/Ng
What is the influence of N, on the peak height ?
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The Peak Intensity |P (height) is thus proportional to Na2
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E The Peak Width FWHM is proportional to 1/N,
10_? The peak Area, the integrated intensity of the Bragg Peak is
] HM[\MMM meﬂ MMMM MMMMM Wm | | thus proportional to I, * FWHM and thus proportional to
B T AR I N, i.e. the number of atoms in the crystal

Momentum transfer q (A™")

This is the basis of all structure resolution and refinement using XRD !!!




Fourier Transform — lattice and structure factor

“Unit cell”  “grating”

f(r) X glr) Becomes F(q)*G(q)
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Fourier Transform — lattice and structure factor, a very full slide !!!

flr) X g Becomes F(q)*G(q)
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=F(g) *G(q)
Or for a 3-dimensional crystal this leads to peaks whenever
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and h, k, ] integers that we will use to "name" our peak positions, G (C‘I’) »
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Normmalized Intensity
o

Flsz(CI) [

these allow us to extract the basic periodicities

Structure

The intensity of this peak depends on...... .
F(G) m)




A closer look on F(q) F(q)

100 —

80 —

7 Fourier Transform

60 —
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Intensity
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q(A1)

With the plane wave approach we obtained the scattering amplitude from an object to be its

. =2 . = . 4‘ [
Fourier Transform from 7-space into g-Space, with |g| = n;ln »

With the convolution theorem, we can separately look at the contributions from lattice and Structure Factor
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And we know that F(q) is only measured at positions F,,,(§) with as a;f[" =hn == k o

B gx =hNgy =k3-Ng, =1




A closer look on F(q)

Fhkz(§)=2ﬁ§gnm1 ;zl1v ieiqri

This leads us to

>\ _\VAtom i=N i2t(hu.+kv.+lw,
Fra(@)=Xacom i—1 fie T Muctkvctiv) S N > N
. ri=uxa+tv;xb+wxc

Where u; v; w; are the real space coordinates expressed in unit cell parameter fractions,
fi describes the atomic scattering factor (how strong an atom scatters)-> atomic amplitude

e 2(hul+kvi+lw) c3n hest be named the “atomic phase”

Q




A closer look on- F(q) - simple examples /2

90
120 = == 60

ei*T[/Z =i

>\ _Atom i=N i2nt(hu.+kv.+1lw.
Fru(@)=Xatomi-1 fi€ U

Where u; v; w; are the real space coordinates expressed in unit cell parameter fractions, |
fi describes the atomic scattering factor (how strong an atom scatters) . U 10— f ‘ 4‘ o 0,2m,4m
e 2(hui+kvi+lw) c3n hest be named the “atomic phase” et =—1 |\ et =1
The sum has to run over all atoms “ i ” inside the unit cell.

Per definition this means al atoms with coordinates 0 < u;, v;, w; <1

Simple cubic, how many atoms ?

A =1 1 —
_ Fuu@=Eaom i=1 fpoe 2000 = £, (q)

Same structure factor for every Bragg Peak !




A closer look on- F(q) - simple examples n/2

90

ei*T[/Z 5
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>\ _Atom i=N i2m(hu.+k +1 .
Fru(@)=Xatomi-1 fi€ U ! )

Where u; v; w; are the real space coordinates expressed in unit cell parameter fractions,
fi describes the atomic scattering factor (how strong an atom scatters)
el2m(hui+kvitl ) c3n pest be named the “atomic phase” e
The sum has to run over all atoms “ i ” inside the unit cell.

Per definition this means al atoms with coordinates 0 < u;, v, w; <1

70 —

FCC, how many atoms ?
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Leads to “selection rules” for monoatomic fcc (or fcc with monoatomic basis):
F 117814y for hk,I = all even or all odd
F;,;,,=0 for h,k,I= mixed




A closer look on-F(gq)- simple examples /2
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____________________________ Scattering at a certain momentum

transfer (depends on observation point) .
We measure I = |F,,,(q) |




A closer look on-F(q)- simple examples
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____________________________ Scattering at a certain momentum
transfer (depends on observation point)




A closer look on- F(q) - simple examples /2 o
w0 el* =1

>\ _Atom i=N i2m(hu.+kv.+1 .
Fru(@)=Xatom i=1 fi€ (hu+ievi+l ) \

Silicon: FCC with two atomic basis, shifted by ( %, %, % )
-> 2x4=8 atoms in the unit cell
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FCC selection rules will continue to exist: In GaAs, InAs or ZnS,

F,,;=0 for h,k,|= mixed (“lattice forbidden”) (Zincblende structure),
F,,,=0 for h,k I= 2n+2 (“basis forbidden”) "°" example  These two fcc lattices are

else for F,;,=8fs; for h,k,1 all even (200) occupied by different atoms
For h,k,l all odd ? For example (111) F,,,(§)=4V2fs;  and FZOONfGa'fAs




Structural analysis as an approach to specific questions —
Where to look in F(q)

>\ _YAtom i=N i2mt(hu.+kv.+1lw.
Fru(@)=Xatom i=1 fi€ (e thev, £0gh)

Example: Oxygen vacancies in monoclinic CuO,

pi*3/2T — _j

3 3 131

Atomic positions are for Cu (i, %, 0), ( 7 ), (Z' 2 E)'

(E e
& 1, ,1 1, ,1 3
And for O (0,0.42,-), (5, 0.92,-),(=, 0.08,-),
4" 2 4!\ 4

3
(0, 0.58,2)

For (1 1 0): We obtain 4x the projected length, ->

110 planes contain Cu and O atoms, an intermediate plane contains only Cu atoms




Structure resolution from a powder pattern

Fou(q)=Yatom =l feton(hutk +lw)

40000 - The intensity (integrated) of a Bragg peak
depends essentially on the structure factor:

Lo ™| Frial?

20000 - It is important to note a certain other factors that
impact the intensity of Bragg peaks

' | : | : |
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Intensity (cts)




Intensity (cts)

Intensity corrections , technical corrections

>\ _Atom i=N i2n(hu.+kv.+1lw.
Fhkl(q)_ZAtomi=1 fie Uthiey, T L)

When treating a complete powder pattern in order to resolve a structure, the exact relative
intensity of all peaks is of relevance

40000 —
Corrections that come with the instrumental setup have thus to be taken into account.
Some are intrinsic and taken into account by the refinement software. Nevertheless this
i will some careful input given by the user; examples are polarization correction and
Lorentz correction. These can even be extracted from calibration standards.
20000 4 Further instrumental corrections/ problems may come from limited angular resolution

(“resolution function”). This does not represent a principal problem for structure resolution but
may have practical consequences. -> knowledge about the beam preparation can be useful

10 20 30 40
20 (%)




Intensity corrections , sample specific

o\ _VAtom i=N ¢ _i2m(hu,+kv,+1 ) We recall the atomic form factor:
Fhkl(CI)_ZAtom i=1 fle ' ' { —— Atomic scattering factor of Silicon
——— Atomic scattering factor of Oxygen

14
12+
10+

Thermal motion of atoms on the lattice.

S N B~ O
T

0 2 4 6 8§ 10 12
Q[AT]
Decreases in for higher momentum transfer as an atom is not point

object but a “blurred” e-cloud.

Thermal motion blurs this even more

-> Bragg intensities decrease with increasing temperature
-> this effect is stongly q-dependent

-> this effect is likely to affect some atoms more than others
-> is likely to be anisotropic
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Intensity corrections , sample specific

F hkl((_i )=Zﬁ§3% ::

i2n(hu,+kv,+lw,)

The atomic scattering factor is strictly speaking energy-dependent (and of course g-dependent)

Cu K-alpha X-rays
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The reason for this are resonant effects when the X-ray
energy comes close to the binding energy of a specific
electron. Varying the X-ray energy to exploit a change in
contrast is often referred to as “anomalous scattering”,
although “resonant scattering” would be better suited
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The refractive index is expressed as n = \/1+ y

12000

Interaction of X-rays ( or light) with materials

For a “free” oscillation the emission would be in the
eigenfrequency.

Exposed to a monochromatic light wave one expects
however elastic scattering from a driven oscillator

Polarized electron clouds=driven harmonic oscillators,
We recall from optics:

y=polarizability Polarization P=y+#E

This can find a simple mechanical equivalent: the driven harmonic oscillator ( a popular model.... )




The dilemma of x-ray optics

The refractive index is expressed as n y=polarizability

Polarized electron clouds=driven harmonic oscillators Polarization P=y#E ~ equiv. mechanical Amplitude

Amplitude

2
a

\/(wg —0)2)2 +¢20)2

X,= P

For w<<w,: P=const. (does hardly
vary with o)

eyeglasses work for all colours,
In this regime, refraction is
almost achromatic

For ®>>wm,: P~1/w?, thus P->0

Refraction in the x-ray regime is very
weak and highly chromatic!],

n ~0.99999..




