Sources, optics and experimental requirements for X-ray Diffraction <u>experiments</u>

X-ray optics and sources, a review also with respect to the interaction of X-rays with Materials

Sources, their characteristics, efficiencies..... Why we need some optics and how optics and sources may match (or not)

Real X-ray experiments: the right "beam" for the right sample, Optics, sources and resolution

Preparation of the X-ray beam has significant influence on any experiment. Crucial questions like Resolution vs statistics are of prime importance in XRD experiments

Peak intensity (integrated, of course -> structure factor, or quantification of a certain phase)

The dilemma of x-ray optics

The refractive index is expressed as $n \approx \sqrt{1 + \chi}$

 χ =polarizability

Polarized electron clouds=driven harmonic oscillators Amplitude for a driven harmonic oscillator

 $X_0 \cong P \propto \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + \phi^2 \omega^2}}$

For $\omega << \omega_0$: P=const. (does hardly vary with ω)

eyeglasses work for all colours, In this regime, refraction is almost achromatic

For $\omega >> \omega_0$: P~1/ ω^2 , thus P-> 0

Refraction in the x-ray regime is very weak and highly chromatic!!,

n ≈0.99999..

Polarization $P = \chi * E \sim$ equiv. mechanical Amplitude

The challenge of x-ray optics (reflection)

The refractive index is expressed as n=1- $\delta + i\beta = \sqrt{\epsilon\mu} \approx \sqrt{\epsilon} = \sqrt{\epsilon_0 (1 + \chi)} \sim 0.9999$ (typically)

Refraction effects play a role only at grazing incidence (bad news for lenses)

Total reflection is only possible for grazing angles (bad news for dielectric mirrors)

Some X-ray lenses do exist , but...

Lens surfaces must be paraboloids of rotation

parameters for Be lenses:

- $R = 50 \text{ to } 1500 \mu \text{m}$
- $2R_0 = 0.45$ to 2.5mm
- d below 30µm

 They need to be concave, with strong radius of curvature due to the weak refractive index, They need to be made out of low Z materials as

Elastic interaction $\sigma_c \sim \omega^{-2} Z^2$ absorption $\sigma_a \sim \omega^{-3} Z^4$

Curved mirrors can make X-rays parallel (or even focus)

 d_{hkl} depends on the cut of our monocrystal 3.136 for Si(111) or 4.2 % more for Ge(111), For lab equipment Ge(220) is a common crystal monochromator.

Perfect (=big) crystals make intense and sharp peaks

If our source emits only one wavelength λ , only one well defined Θ will be reflected !!,

This reduces our intensity but increases our resolution: we will get a very parallel and small beam

This compromise is sometimes difficult to accept...

 $\sin(\Theta) = \frac{\lambda}{2d_{hkl}}$

Crystals as X-ray optics

$$\sin(\Theta) = \frac{\lambda}{2d_{hkl}}$$

Ideally we would need to position a small crystal under slightly different angle at every position in the beam cone. This would reflect all rays of the primary beam and focus them into a spot at a distance p=q

-possible, e.g. by bending thin crystal sheets (done with graphite, Si, Ge)

But:

θ

р

- -> Cannot make the beam parallel, only refocus with 1:1 ratio
- -> Not a good solution for most XRD applications as angular resolution is important

 $\sin(\Theta) = \frac{\lambda}{2d_{hkl}}$

As every point at our reflector needs to satisfy the Bragg condition, we would need ideally to adapt d_{hkl} in every point in order to obtain another reflection angle for every position. Multilayers as "artificial crystals" are a solution

Multilayer optics

By choosing the d-spacing, every mirror shape can be realized and adapted to a certain wavelength; Such a d-spacing will be bigger than the atomic d-spacing and the reflection angle will be low, typically 1-2 degrees. -> still significantly bigger then the grazing angle of total external reflection -> moderately compact optics possible

Optics and spectral purity, case for lab instruments

Satellite peaks, 4% and 10 % lower than the main peaks ?

Physical origin of x-rays from a sealed tube

Accelerated electrons (typically30-60 keV hit the anode, get slowed down and emit **Bremsstrahlung**. The Anode Material is subject to multiple electronic excitations leading to **characteristic radiation**. Most of the electrons' energy is converted into **heat** however. In general the Anode is water-cooled.

Spectrum of an x-ray tube, example of Cu

X-ray spectrum, example of Cu

Rule of thumb 1: K-alpha is about 10 % below ionization level K-beta less then 1 % below Ionization level Rule of thumb 2: The Ionization Level of element Z-1 lies in between K-alpha and K-beta of element Z Cu K-beta filter: a piece of Nickel-foil !

Spectral impurities and extra peaks

Radiation: Cu K α_{182} : 8.04 keV some Cu K β : 8.905 keV (=1.107*k α)

Spectral emission lines from a Cu-anode

Combined mirror-crystal optics

Making the beam "parallel" with a (multilayer) mirror, and selecting thr right wavelength (K- α) is eventually a good (though expensive and alignment intense) compromise. Mirror development over the last decades has improved to reject efficiently a large fraction of parasitic lines.

 $\sin(\Theta) = \frac{\lambda}{2d_{hkl}}$ "Perfect" parallel beam (still quantum mechanical limits may apply)

"Perfect point source"

Extended source: every point on the mirror sees radiation from different angles. This is reproduced as a finite beam divergence after the mirror

Definition of a good source

Small, low divergence, monochromatic, emitting lots of photons/second

Brilliance of a source: $B = \frac{photons}{s} \frac{1}{0.1\% Bandwidth} \frac{1}{\theta_x \theta_y S_x S_y}$

Divergences Source size $\begin{array}{c} \theta_x \theta_y \\ S_x S_y \\ S_$

Technical limits for classic X-ray tubes: melting of anode material by energy density of the electron beam

Efficiency of a lab X-ray tube.

At 60 KV acceleration Voltage, approx. 0.5 % of the electron energy is converted into radiation (rest: heat).

Most of this radiation goes "the wrong way" (in all spatial directions... 4π). And most of the photons are not in the spectral range we are interested in (For ex. Cu K-alpha).

Example: 3 kW point focus monocrystal diffraction apparatus, with typical collection optics at the anode exit accepting 150 mrad x150 mrad of radiation: 2.25 exp-4 of the emitted angular range of radiation can be collected by the optics (that has an efficiency of about 50 % .

Thus the estimated efficiency is

0.5*10⁻²*2.25*10⁻⁴*0.5*(spectral fraction of K-alpha line)

5.5*10-7

Simpler: measure the amount of photons/sec on the sample of such an apparatus ~ few 10^{-9} ph/s This corresponds to about~ 10^{-6} W of beampower for a photon energy of 8 keV. At an input powder of a few kW this yields a total efficiency of 10^{-9}

Pag 14

Discovery of Synchrotron Radiation

1947 First observation of synchrotron radiation 70 MeV GE, Schenectady, NY

